Subsequence convergence in subdivision
نویسنده
چکیده
We study the phenomenon that regularly spaced subsequences of the control points in subdivision may converge to scalar multiples of the same limit function, even though subdivision itself is divergent. We present different sets of easily checkable sufficient conditions for this phenomenon (which we term subsequence convergence) to occur, study the basic properties of subsequence convergence, show how certain results from subdivision carry over to this case, show an application for decorative effects, and use our results to build nested sets of refinement masks, which provide some insight into the structure of the set of refinable functions. All our results are formulated for a general integer dilation factor.
منابع مشابه
Differentiability of multivariate refinable functions and factorization
Abstract. The paper develops a necessary condition for the regularity of a multivariate refinable function in terms of a factorization property of the associated subdivision mask. The extension to arbitrary isotropic dilation matrices necessitates the introduction of the concepts of restricted and renormalized convergence of a subdivision scheme as well as the notion of subconvergence, i.e., th...
متن کاملOn Multivariate Subdivision Schemes with Nonnegative Finite Masks
We study the convergence of multivariate subdivision schemes with nonnegative finite masks. Consequently, the convergence problem for the multivariate subdivision schemes with nonnegative finite masks supported on centered zonotopes is solved. Roughly speaking, the subdivision schemes defined by these masks are always convergent, which gives an answer to a question raised by Cavaretta, Dahmen a...
متن کاملConvergent Vector and Hermite Subdivision Schemes
Hermite subdivision schemes have been studied by Merrien, Dyn and Levin and they appear to be very different from subdivision schemes analyzed before since the rules depend on the subdivision level. As suggested by Dyn and Levin, it is possible to transform the initial scheme into a uniform stationary vector subdivision scheme which can be handled more easily. With this transformation, the stud...
متن کاملExact Evaluation of NURSS at Arbitrary Parameter Values
Convergence and continuity analyses as well as exact evaluation of non-uniform subdivision surfaces at arbitrary parameter values have been very difficult because the subdivision matrix varies at each iteration step, unlike uniform subdivision surfaces. Using eigenanalysis and convergence properties of non-uniform subdivision surfaces that have been given by authors recently, a parameterization...
متن کاملNonlinear subdivision schemes on irregular meshes
The present article deals with convergence and smoothness analysis of geometric, nonlinear, subdivision schemes in the presence of extraordinary points. We discuss when the existence of a proximity condition between a linear scheme and its nonlinear analogue implies convergence of the nonlinear scheme (for dense enough input data). Furthermore, we obtain C1 smoothness of the nonlinear limit fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 80 شماره
صفحات -
تاریخ انتشار 2011